Interleukin-17A during local and systemic Staphylococcus aureus-induced arthritis in mice.
نویسندگان
چکیده
Staphylococcus aureus is one of the dominant pathogens that induce septic arthritis in immunocompromised hosts, e.g., patients suffering from rheumatoid arthritis treated with immunosuppressive drugs. S. aureus-induced arthritis leads to severe joint destruction and high mortality despite antibiotic treatment. Recently, interleukin-17A (IL-17A) has been discovered to be an important mediator of aseptic arthritis both in mice and humans, but its function in S. aureus-induced arthritis is largely unknown. Here, we investigated the role of IL-17A in host defense against arthritis following systemic and local S. aureus infection in vivo. IL-17A knockout mice and wild-type mice were inoculated systemically (intravenously) or locally (intra-articularly) with S. aureus. During systemic infection, IL-17A knockout mice lost significantly more weight than the wild-type mice did, but no differences were found in the mortality rate. The absence of IL-17A had no impact on clinical arthritis development but led to increased histopathological erosivity late during systemic S. aureus infection. Bacterial clearance in kidneys was increased in IL-17A knockout mice compared to the level in wild-type mice only 1 day after bacterial inoculation. During systemic S. aureus infection, serum IL-17F protein levels and mRNA levels in the lymph nodes were elevated in the IL-17A knockout mice compared to the level in wild-type mice. In contrast to systemic infection, the IL-17A knockout mice had increased synovitis and erosions and locally decreased clearance of bacteria 3 days after local bacterial inoculation. On the basis of these findings, we suggest that IL-17A is more important in local host defense than in systemic host defense against S. aureus-induced arthritis.
منابع مشابه
Estradiol ameliorates arthritis and protects against systemic bone loss in Staphylococcus aureus infection in mice
INTRODUCTION Staphylococcus aureus is a common cause of bacterial arthritis, which is associated with progressive bone loss in affected joints. We recently showed that S. aureus infection also induces a significant systemic bone loss in mice. This study was performed to assess the effect of estradiol treatment on the clinical course and outcome of S. aureus arthritis and on infection-induced bo...
متن کاملVaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection.
Toxic shock syndrome toxin-1 (TSST-1) is one of superantigens produced by Staphylococcus aureus. We have previously demonstrated that vaccination with non-toxic mutant TSST-1 (mTSST-1) develops host protection to lethal S. aureus infection in mice. However, the detailed mechanism underlying this protection is necessary to elucidate because the passive transfer of antibodies against TSST-1 fails...
متن کاملInterleukin 15 mediates joint destruction in Staphylococcus aureus arthritis.
BACKGROUND Staphylococcus aureus arthritis causes severe and rapid joint damage despite antibiotics. Thus, there is a need to identify new treatment targets in addition to antibiotics. Lately, interleukin 15 (IL-15) has been implicated both in osteoclastogenesis and in bacterial clearance-2 important issues in S. aureus-induced joint destruction. This has prompted us to investigate the importan...
متن کاملRAGE Deficiency Impairs Bacterial Clearance in Murine Staphylococcal Sepsis, but Has No Significant Impact on Staphylococcal Septic Arthritis
BACKGROUND Septic arthritis is a serious joint disease often caused by Staphylococcus aureus (S. aureus). Receptor for Advanced Glycation End products (RAGE) has an important role in several infections. We sought to investigate the role of RAGE in staphylococcal septic arthritis and sepsis in mice. METHODS Wild-type (WT) and RAGE deficient (RAGE-/-) mice were intra-articularly or intravenousl...
متن کاملAre B lymphocytes of importance in severe Staphylococcus aureus infections?
To investigate the role of B cells in experimental, superantigen-mediated Staphylococcus aureus arthritis and sepsis, we used gene-targeted B-cell-deficient mice. The mice were inoculated intravenously with a toxic shock syndrome toxin 1 (TSST-1)-producing S. aureus strain. The B-cell-deficient and thus agamma-globulinemic mice showed striking similarities to the wild-type control animals with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 78 9 شماره
صفحات -
تاریخ انتشار 2010